

MetaMask Mobile Application
Final Security Audit Report
MetaMask
Report Version: 9 April 2019

Table of Contents

Overview

Coverage

Target Code and Revision

Manual Code Review

Methodology

Vulnerability Analysis

Documenting Results

Suggested Solutions

Findings

Code Quality

Issues

Issue A: Dependencies Should Be Pinned to Exact Versions

Issue B: Polling Timers Can Exhaust File Descriptors

Issue C: The safelyExecute Function Swallows Exceptions

Issue D: Transaction Validation is Insufficient

Issue E: Password Strength Calculation is Insufficient

Issue F: The isSmartContractAddress Function is Unreliable Over Time

Suggestions

Suggestion 1: Add Validation to the AddressBookController

Suggestion 2: Add Test Coverage for Gaba’s KeyringController

Suggestion 3: PreferencesControlle r Should Match Against Non-Public IPs

Suggestion 4: Force TLS in RPC URL in AppSettings

Suggestion 5: Allow dApps to Access MetaMask by Whitelist Only

Suggestion 6: Require TLS for Opening dApp Deeplinks

Suggestion 7: Remove Links to Questionable dApps

Suggestion 8: Improve the isDecimal Number Utility

Suggestion 9: Do Not Send Regular Logs to Crashlytics

Recommendations

Security Audit Report | MetaMask 1
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
MetaMask has requested that Least Authority perform a security audit of their mobile application, a wallet
and developer tool for applications built on Ethereum. MetaMask allows users to browse the web and
interact with Ethereum applications, sign messages and transactions, and securely manage and store
their private keys and assets.

The mobile application is built in React Native within a single codebase for both iOS and Android
platforms. MetaMask previously built and released a web extension providing the same functionality,
which is included within the mobile application.

The audit was performed from February 18 - March 7, 2019, by Lily Anne Hall and Dominic Tarr, with
dedicated project management support by Hind Abu-Amr. The initial report was issued on March 8, 2019.
A final report has been issued following the discussion and verification phase on April 9, 2019.

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the MetaMask followed by issue
reporting, along with mitigation and remediation instructions outlined in this report. The following code
repositories are in scope:

Specifically, we examined the Git revisions:

gaba@92cf95476c0732a13c5e30cadfbf9296cdd7b1cf

metamask@b57476b142cedbddf725f8787b668ca64642b4c2

eth-keyring-controller@9e180e5b10c0ceeb437f6d44360b525b3083c723

browser-passworder@089893779ce366a9f0ee038b9c71708649fc0e1d

All file references in this document use Unix-style paths relative to the project’s root directory.

Areas of Concern
Our investigation focused on the following areas:

● Any attack that impacts funds, such as draining or manipulating of funds;
● Exploitation of the webview to gain control of the wallet;
● Areas where insufficient validation allows for hostile input;
● Application of cryptography to protect secrets;
● Storing private keys and assets securely;
● Exposure of any critical information during user interactions with the blockchain and external

libraries;
● General use of external libraries;
● Secure usage of the feature synchronizing the wallet from the web extension to the phone using a

QR code;
● Potential points of failure resulting from the use of native code for encryption which calls back to

different libraries on iOS and Android;
● Use of Gaba; and

Security Audit Report | MetaMask 2
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

● Anything else as identified during the initial analysis phase.

Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with with the developers to gain an appreciation of their
vision of the software. We install and use the relevant software, exploring the user interactions and roles.
While we do this, we brainstorm threat models and attack surfaces. We read design documentation,
review other audit results, search for similar projects, examine source code dependencies, skim open
issue tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create
an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the

Security Audit Report | MetaMask 3
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Findings
Code Quality
Overall, the packages we reviewed were structured in a manner that was simple and intuitive to follow.
However, we found that there is liberal use of external dependencies, both third party and otherwise. In
some instances, this made it somewhat difficult to trace some of the more sensitive code paths. Due to
the scope of the audit being limited to Gaba and MetaMask, we were unable to fully evaluate a number of
packages that are authored by the MetaMask team and used in Gaba and MetaMask, such as the group
of “eth-*” generic packages. While this type of modularity can be useful for making specific functionality
available to generic uses, it has a negative impact on security evaluations. In the Issues section we have
addressed many of these challenges as specific issues.

While we found many areas of improvement, we did not find any critical security vulnerabilities that pose
an immediate and clear threat to value stored in MetaMask. Upon verification of the issue remediation, we
were pleased to find that all of our concerns were addressed and easy to verify due to the development
practices utilized by the team, including good code organization, pull request compartmentalization,
commit messages, and more.

As a whole, we found the code base to be of exceptional quality and that it adheres to best development
practices.

Issues
We list the issues we found in the code in the order we reported them. In most cases, remediation of an
issue is preferable, but mitigation is suggested as another option for cases where a trade-off could be
required.

ISSUE / SUGGESTION STATUS

Issue A: Dependencies Should Be Pinned to Exact Versions Resolved

Issue B: Polling Timers Can Exhaust File Descriptors Resolved

Issue C: The safelyExecute Function Swallows Exceptions Resolved

Issue D: Transaction Validation is Insufficient Resolved

Issue E: Password Strength Calculation is Insufficient Resolved

Issue F: The isSmartContractAddress Function is Unreliable Over Time Resolved

Suggestion 1: Add Validation to the AddressBookController Resolved

Security Audit Report | MetaMask 4
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Suggestion 2: Add Test Coverage For Gaba’s KeyringController Resolved

Suggestion 3: PreferencesController Should Match Against Non-Public
IPs

Resolved

Suggestion 4: Force TLS in RPC URL in AppSettings Resolved

Suggestion 5: Allow dApps to Access MetaMask by Whitelist Only Resolved

Suggestion 6: Require TLS for Opening dApp Deeplinks Resolved

Suggestion 7: Remove Links to Questionable dApps Resolved

Suggestion 8: Improve the isDecima l Number Utility Resolved

Suggestion 9: Do Not Send Regular Logs to Crashlytics Void

Issue A: Dependencies Should Be Pinned to Exact Versions

Synopsis

Both Gaba and MetaMask each contain over 1000 dependencies, most of which are not pinned to an
exact version but set to compatible version (^x.x.x). This can potentially enable dependency attacks as
observed with the event-stream package with the Copay Bitcoin Wallet.

Impact

Critical. Could lead to complete loss of funds.

Preconditions

The author, maintainer, or attacker with publish access to any of the 1000+ dependencies that MetaMask
and Gaba has publishes a new compatible version that sneaks in malicious code to steal MetaMask user
private keys or otherwise subvert the security of the application.

Feasibility

Easy. MetaMask is a very high value target and, while the copay/event-stream attack did not actually
succeed in stealing any funds, attackers may consider trying again.

Mitigation

Pinning dependencies to an exact version (=x.x.x) can reduce the possibility of inadvertently introducing a
malicious version of a dependency in the future.

Remediation

As acknowledged by the MetaMask team as part of a roadmap briefing provided, the future use of SES
containers for module sandboxing can eliminate this class of attacks.

Security Audit Report | MetaMask 5
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Status

The MetaMask dependencies have been pinned to exact versions and the Gaba dependencies have been
locked using npm-shrinkwrap.

Verification

Resolved.

Issue B: Polling Timers Can Exhaust File Descriptors

Synopsis

Gaba contains a number of classes that initiate a polling mechanism for querying remote services for
various information. Due to the way in which these timers are written, certain network conditions could
lead to “stacking” connections, thus causing an exhaustion of sockets/file descriptors.

Impact

Running out of file descriptors could lead to MetaMask and other applications being unable to operate
correctly.

Preconditions

Various networks conditions that might lead to a connection opening but hanging indefinitely, such as the
use of an unresponsive proxy, some networks with captive portals, or simply high latency.

Feasibility

Low. This is an edge case that is probably not very likely to impact most users.

Technical Details

All of the polling timers are constructed in the same way. The async action is triggered, immediately
followed by a timeout to call it again. This means that the timeout is started without concern for whether
or not the action is completed. As a result, if the network conditions are right, these polling timers can
consume more and more file descriptors over time.

The following modules are affected: AccountTrackerController, AssetsDetectionController,
CurrencyRateController, NetworkStatusController, PhishingController, ShapeShiftController,
TokenBalancesController, TokenRatesController, TransactionController.

Remediation

Rework the polling/interval logic used to wait for the completion of the current async action before
triggering the next timeout. This would prohibit the application from continuing to stack retries on top of
one another If these network conditions are problematic.

Status

The interval based timers have been updated to timeout-base polling as recommended.

Verification

Resolved.

Security Audit Report | MetaMask 6
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Issue C: The safelyExecute Function Swallows Exceptions

Synopsis

Gaba often makes use of a utility function called safelyExecute . The purpose of this function is to call
a supplied function without handling any exceptions or errors that may occur.

Impact

Unknown. Swallowing errors is never a good idea. If a bug were introduced in any of the code passed to
safelyExecute , it can make it extremely difficult to trace. Furthermore, it could potentially hide issues
that could be related to security vulnerabilities.

Preconditions

A bug is introduced into code that gets passed to safelyExecute .

Feasibility

Moderate. Given that there is very good test coverage, the probability of this happening is low. However,
test suites are not always adequate for detecting all edge cases.

Technical Details

The safelyExecute function accepts a function that returns a Promise and then calls it inside of a
try...catch block. The catch block does not handle exceptions, provide a way for the caller to handle
them, or even log the error. Because of this failures and critical issues can go unnoticed.

Mitigation

Adding an error logger can at least provide feedback for understanding failures.

Remediation

Do not swallow errors, instead handle all errors.

Status

The recommended mitigation strategy was implemented and errors are now logged instead of completely
swallowed.

Verification

Resolved.

Issue D: Transaction Validation is Insufficient

Synopsis

The validateTransaction utility function in Gaba is not sufficient in preventing hostile input.

Impact

Moderate. If an attacker were able to insert a fake transaction or if a math bug elsewhere in the code were
introduced, it could cause things like balances to be unreadable and potentially create issues with
sending transactions based on that balance.

Preconditions

Remote API changes response format, a math bug is introduced elsewhere in the code, or an attacker
manages to manipulate input.

Security Audit Report | MetaMask 7
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Feasibility

Unknown.

Technical Details

The value is converted to a string and then checked for “-” and “.” to determine if it is a negative or floating
point number respectively. There are no other checks.

The current incarnation of this function allows the numerical values Infinity and NaN as well as unsafe
numbers like 10000000000000000 and even strings like “one million dollar$” . This can
potentially lead to a class of bugs like 9007199254740992 === 9007199254740993; // true

Remediation

Instead of type casting and checking for substrings, the best approach here is to check
Number.isFinite() , !Number.isNaN() , and Number.isSafeInteger() . This will provide the
validation needed and perform better.

Status

Transaction validation was improved in a manner consistent with the recommended remediation.

Verification

Resolved.

Issue E: Password Strength Calculation is Insufficient

Synopsis

The ChoosePassword view has a password validation routine that attempts to enforce a certain degree of
password strength, yet currently “abc123!” and “passw0rd!” will receive high strength scores. Since the
password is used with browser-passworder to protect wallet keys, it’s likely that it’s worth brute forcing.

Impact

Critical. Could lead to complete loss of funds.

Preconditions

Attacker obtains an encrypted MetaMask backup or wallet. This is as simple as stealing the user’s phone
or computer.

Feasibility

Easy. A moderately determined thief should have no problem stealing a device.

Technical Details

Encryption at rest is only good with a good password. Users are likely to choose common passwords,
using common substitutions. If an attacker possessed an encrypted MetaMask backup, a dictionary
attack using common passwords could likely be all that is needed. Password hashing with a salt does
make brute forcing a password more expensive, but it’s still easy to check thousands of passwords,
which will cover a lot of users.

Remediation

Exclude use of passwords included in the top 10,000 known passwords. There are modules for estimating
password strength such as zxcvbn , however, the common practice to estimate strength in time tends to
give an overestimated sense of security. It is recommended to estimate password strength in money (i.e.

Security Audit Report | MetaMask 8
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

one year to break a password sounds considerably strong, however, that’s about $170 on ec2. Of course,
it can be parallelized so it also wouldn’t require a full year).

Status

Password strength is now checked using zxcvbn per the recommended remediation strategy.

Verification

Resolved .

Issue F: The isSmartContractAddress Function is Unreliable Over Time

Synopsis

The utility function for determining if an address belongs to a smart contract is only reliable when called.
The result, if cached, could be different at any time in the future.

Impact

Unknown. Depends on how the result is used.

Preconditions

Contract is either deployed after the function is called or self destructed after the function is called.

Feasibility

Easy. Contract owner has complete control over the contract.

Technical Details

This method of checking if an address has a contract (getcode) is only reliable when it is called, as the
address may not have always been a contract and may not be in the future.

Remediation

Care should be taken now and in the future to ensure that this method should be called every time the
respective result is needed - not cached.

Status

The number of areas where the result of this call is cached has been greatly reduced and the areas where
it is still cached are deemed safe.

Verification

Resolved.

Suggestions

Suggestion 1: Add Validation to the AddressBookController

Synopsis

The AddressBookController in Gaba does not perform any validation on the input and allows invalid
addresses.

Security Audit Report | MetaMask 9
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Mitigation

Validate addresses added to the address book.

Status

Address validation has been added to the controller.

Verification

Resolved .

Suggestion 2: Add Test Coverage For Gaba’s KeyringController

Synopsis

Test coverage is incorrectly reported at 100% due to the lack of importing and testing of the
KeyringController . The “heavy lifting” of this controller is handled in another package, but it’s still
important to test this controller to ensure proper usage.

Mitigation

Author a test suite for the KeyringController .

Status

Tests were added for the KeyringController.

Verification

Resolved.

Suggestion 3: PreferencesController Should Match Against Non-Public
IPs

Synopsis

There is a condition in the PreferencesController that checks if the RPC URL is
http://localhost:8545 , presumably to check if the node is a local testing node. However, a user may
conceivably run their node on a different port, which would fail this check.

Mitigation

Simply match against 127.0.0.1, localhost, or any non-public IP address.

Status

The referenced code was removed entirely.

Verification

Resolved.

Suggestion 4: Force TLS in RPC URL in AppSettings

Synopsis

The AppSettings UI allows the user to input a custom RPC URL, however, there doesn’t appear to be
any enforcement on the protocol to use HTTPS.

Security Audit Report | MetaMask 10
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Mitigation

Either enforce that users use HTTPS or display a warning to inform the user that communication with the
RPC server could be monitored or manipulated if HTTP.

Status

Non-TLS connection are now only allowed if the host is a loopback interface or on the local network.

Verification

Resolved.

Suggestion 5: Allow dApps to Access MetaMask by Whitelist Only

Synopsis

The current whitelist system is in place for the purpose of bypassing the phishing warning for reported
sites. This is a reactive approach to whitelisting that means someone or some group of users will have
had to have been phished and reported it in order to prevent the offending dApp from being automatically
granted access.

Mitigation

Using the whitelist as a means for allowing any dApp to use the MetaMask API would be a proactive
approach and prevent unknown or unwanted dApps from accessing MetaMask.

Status

The MetaMask team has enabled “Privacy Mode” for all mobile users, a feature allowing sites to access
user accounts only with explicit consent from the user (unless they have intentionally disabled Privacy
Mode). In the near future, they plan on further mitigating the risk for extension users by building a UI
allowing the user to initiate a force address exposure .

Verification

Resolved .

Suggestion 6: Require TLS for Opening dApp Deeplinks

Synopsis

Deeplinks for dApps can be opened via cleartext HTTP, which is easily susceptible to interception and
manipulation. For dApps that interact with a user’s funds, this is very undesirable and dangerous.

Mitigation

Either enforce that deeplink use HTTPS or display a warning to inform the user that communication with
the dApp could be monitored or manipulated if HTTP.

Status

Deeplinks are now forced to use HTTPS.

Verification

Resolved .

Security Audit Report | MetaMask 11
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Suggestion 7: Remove Links to Questionable dApps

Synopsis

Some of the URLs in the dApp URL list are insecure (no HTTPS) and several are for projects of
questionable value (such as seemingly self-aware Ponzi schemes).

Mitigation

Have a more strict curated list of dApps to include in the application. Appearing to promote questionable
projects can confuse users into accepting possible scams as valid when compared to things like
“PonzICO” and / or similar.

Status

DApp list was rewritten to include well-known dApps instead of the large unverified list.

Verification

Resolved.

Suggestion 8: Improve the isDecimal Number Utility

Synopsis

Using a regular expression for number validation may be confusing and could lead to issues during type
coercion.

Mitigation

Avoid type coercion and use JavaScript’s built in number validation:
Number.isFinite(parseFloat(value)) && !Number.isNaN(parseFloat(value))

Status

Switched from regex to using JS number validation.

Verification

Resolved.

Suggestion 9: Do Not Send Regular Logs to Crashlytics

Synopsis

There is code in place in the logger that suggests there are plans to push all application logs to the
Crashlytics API. This is a privacy concern.

Mitigation

Only submit errors and crash reports to Crashlytics and only do so as an opt-in preference for the user.

Status

Following further discussion of the suggestion with the MetaMask team, it is understood that the public
beta version of the app will include an onboarding screen that requests a user’s consent to send error
logs to Crashlytics, and only if the user opts-in will the error logs be sent to Crashlytics.

Security Audit Report | MetaMask 12
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Verification

Void .

Recommendations
We recommend that any unresolved or partially resolved Issues and Suggestions stated above are
addressed as soon as possible.

Additionally, the use of packages should be continuously reviewed for further mitigation of the risks
introduced. As noted in the Code Quality section, with so many external dependencies, there is much
opportunity for both unintentional vulnerabilities and direct attacks to users funds. Periodically running
npm audit fix to take care of reported vulnerabilities automatically is a good practice and carefully
evaluating new dependencies before introducing them is vital.

We found that the overall design demonstrated that MetaMask is being developed with security in mind.
We commend this practice and recommend that future development releases of the application continue
to apply security best practices and that additional security audits be conducted to address any potential
issues and vulnerabilities.

Security Audit Report | MetaMask 13
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14

