

Galleon Wallet

Final Security Audit Report

Tezos
Report Version: 13 July 2018

Table of Contents

Overview

Coverage

Target Code and Revision

Manual Code Review

Findings

Code Status

Issues

Issue A: Missing Passphrase Validation on Wallet

Issue B: Function with Unnecessary Knowledge of Private Key

Issue C: Wallet Ignores Invalid SSL Certificates for Conceil Server

Issue D: Encryption Utility Does Not Impose Passphrase Restrictions

Issue E: User Passphrase for Wallet is Overwritten Upon Update

Issue F: Newly Created Wallets Do Not Persist Between Restarts

Issue G: Nautilus Queries Are Sent Unencrypted

Issue H: Created Wallets Overwrite Others With Name Conflicts

Suggestions

Suggestion 1: Avoid Throwing Types That Don’t Provide a Stack Trace

Recommendations

Security Audit Report | Tezos 1
2018 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
The Tezos Foundation requested that Least Authority perform a security audit of the Galleon Wallet
developed by Cryptonomic, in preparation for the upcoming Tezos beta net and main net launches.

The audit was performed from June 11 - 19, 2018 by Lily Anne Hall and Dominic Tarr. The initial report was
issued on June 19, 2018. The updated report was issued on July 13, 2018, following a discussion and
verification phase.

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of Cryptonomic’s Tezos Wallet followed
by issue reporting, along with mitigation and remediation instructions as outlined in this report. The
following code repositories are in scope:

● Typescript-based client side library that manages wallet files and keys, encryption / decryption
and coordination with the back end systems, including Conseil and the Tezos node:
https://github.com/Cryptonomic/ConseilJS

● Scala-based server side API for querying cached Tezos blockchain data:
https://github.com/Cryptonomic/Conseil

● Wallet source code (Tezos-Wallet-develop.zip provided by Cryptonomic on June 11, 2018)

Following the delivery of the initial report, we were instructed to verify remediation of the issues and
examined:

● https://github.com/Cryptonomic/Tezos-Wallet
(b8988689f321e076f6f568971cbe02162d607b55)

● https://github.com/Cryptonomic/ConseilJS
(0d0a03aebff8ea186dc385aa1e14fc0038e3c052)

Manual Code Review
In manually reviewing the Conseil.js and the Wallet code, we looked for any potential issues with code
logic, error handling, protocol and header parsing, cryptographic errors, and random number generators.
We also reviewed for areas where more defensive programming could reduce the risk of future mistakes
and speed up future audits. Although our primary focus was on Conseil.js and the Wallet code, we
examined dependency code and behavior when it was relevant to a particular line of investigation.

Our investigation focused on the following areas:

● Any attack that impacts funds within the wallet,
● The management of private keys within the wallet, and
● Communications between the client wallet and servers.

Security Audit Report | Tezos 2
2018 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Findings
Code Status
In reviewing the version of the source code provided to us on June 11, 2018
(Tezos-Wallet-develop.zip), we found that due to the incomplete status of development, including
the UI in particular, the conditions of the code were not optimal for a security audit. Our main source of
concern was that there was a number of critical security vulnerabilities in that codebase and the
significant changes that needed to take place prior to deploying this wallet for production use.

While we understood this project was in a rush to be completed by a previously scheduled launch date, we
recommended that schedules be extended, as necessary, to further develop the code and have it be
re-audited. With the wallet being core to the management of Tezos funds in the community, the status of
the code security should be a priority.

Our team found the code to be in a much better condition by the time we did our verification, which was
clearly delayed to make many improvements.

Issues
We list the issues we found in the code in the order we reported them.

ISSUE / SUGGESTION STATUS

Issue A: Missing Passphrase Validation on Wallet Unresolved

Issue B: Function with Unnecessary Knowledge of Private Key Resolved

Issue C: Wallet Ignores Invalid SSL Certificates for Conceil Server Partially Resolved

Issue D: Encryption Utility Does Not Impose Passphrase Restrictions Resolved

Issue E: User Passphrase for Wallet is Overwritten Upon Update Resolved

Issue F: Newly Created Wallets Do Not Persist Between Restart Resolved

Issue G: Nautilus Queries Are Sent Unencrypted Unknown

Issue H: Created Wallets Overwrite Others With Name Conflicts Resolved

Suggestion 1: Avoid Throwing Types That Don’t Provide a Stack Trace Resolved

Issue A: Missing Passphrase Validation on Wallet

Synopsis

The TezosWallet#saveWallet function accepts a passphrase in order to encrypt the wallet JSON file,
however, there are not any requirements for this passphrase or validation to enforce those requirements,
allowing the wallet to be encrypted with an empty passphrase or weak passphrase.

Security Audit Report | Tezos 3
2018 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Impact

End users are able to effectively bypass securing their wallet with a passphrase, since an empty string is
valid. While the strength of the user’s passphrase is their own choice, there should exist some basic
strength requirements at a minimum.

Preconditions

None.

Feasibility

High. A user is able to pass an empty string as a passphrase and it will be accepted as valid.

Remediation

The function in question should be adapted to include a few validation checks before accepting the
passphrase. Passphrase strength requirements can vary, however a good baseline is:

● Minimum of 8 characters
● Does not contain the username (or in this case the wallet name)
● Must use at least three of the four character types: lowercase letters, uppercase letters, numbers,

and symbols

Status

No modifications were made to validate the supplied passphrase to the TezosWallet#saveWallet
function. However, we have taken note that this logic has been implemented at the application layer
within the Tezos Wallet user interface.

Verification

Unresolved.

Issue B: Function with Unnecessary Knowledge of Private Key

Synopsis

The TezosOperations#forgeOperations function unnecessarily receives a full instance of
KeyStore , which contains the user’s private key. This function only makes use of the hash of the public
key, which is stored as a property on the KeyStore .

Impact

Currently there is no impact, however, we recommend following the principle of least authority. Any
component of a system should only be granted the authority it requires to perform its duty. In this case,
since the function in question does not require the secret key, it should not be aware of it. If a future
iteration of this function (or any other) introduces a vulnerability, the private key will have been
unnecessarily exposed.

Preconditions

None.

Feasibility

Low or unknown. Currently no impact.

Security Audit Report | Tezos 4
2018 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Remediation

The function in question only requires the public key hash to perform its duty, so the function signature
should be changed to reflect this. Functions that call this function with a KeyStore , should be changed to
pass it only the KeyStore#publicKeyHash . If there are areas where functions calling this function only
accept a KeyStore to pass it through, their signature should also be changed to accept the public key
hash directly.

Status

The TezosOperations#forgeOperations function no longer depends upon or receives a KeyStore
instance containing the user’s private key.

Verification

Resolved.

Issue C: Wallet Ignores Invalid SSL Certificates for Conceil Server

Synopsis

The query made by the function queryConceilServer uses an HTTPS agent with
rejectUnauthorized set to false , allowing a man-in-the-middle to intercept requests and impersonate
the Conceil server. In addition, the application uses a hardcoded API key “hooman” to authenticate with
the remote server.

Impact

Severe. An attacker can present an invalid SSL certificate and decrypt the payload intended for the
Conceil server. The attacker may also respond to the request with invalid data to trick end users. The
attack may forward the request and intercept the upstream response to learn private and sensitive
information about the user including:

● Accounts, which contains private data like balances
● Operations, which contains sensitive data like secrets
● Operation Groups

In addition to eavesdropping on the communication between the wallet and the remote server, the
attacker would also be capable of replaying messages, including transaction operations, in order to drain
the user’s funds if the remote node does not provide appropriate protection against such attacks. Based
upon the payloads sent by the wallet, it appears the remote server does not provide such protection.

Preconditions

None.

Feasibility

High. Trivial attacks when using the wallet on a public network like coffee shops or hotels using a rogue
access point like a WiFi Pineapple.

Remediation

Reject unauthorized SSL certificates and use X.509 certificate pinning to ensure that communication with
the remote server is authenticated.

Status

There is no longer a hardcoded Conceil server connection that explicitly ignores invalid SSL certificates.
Without explicitly ignoring unauthorized certificates, the default behavior is to reject such connections.

Security Audit Report | Tezos 5
2018 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Users may input their own Conceil server - which may be using an unencrypted connection, however
invalid certificates will fail. We have taken note that a ticket is currently open to prevent users from setting
unencrypted Conceil servers (https://github.com/Cryptonomic/Tezos-Wallet/issues/174).

Verification

Partially resolved.

Issue D: Encryption Utility Does Not Impose Passphrase Restrictions

Synopsis

The function encryptMessage does not impose any restrictions on the supplied passphrase, allowing
the user to use an empty passphrase.

Impact

This is similar to Issue A , but is implemented as a generic encryption utility within the wallet code, so it
may be used to secure more than just wallet data in the future.

Preconditions

None.

Feasibility

High. A user is able to pass an empty string as a passphrase and it will be accepted as valid.

Remediation

The function in question should be adapted to include a few validation checks before accepting the
passphrase. Passphrase strength requirements can vary, however a good baseline is:

● Minimum of 8 characters
● Does not contain the username (or in this case the wallet name)
● Must use at least three of the four character types: lowercase letters, uppercase letters, numbers,

and symbols

Status

Users are now forced to input strong passphrases in order to encrypt their wallet.

Verification

Resolved.

Issue E: User Passphrase for Wallet is Overwritten Upon Update

Synopsis

The function saveUpdatedWallet function calls TezosWallet#saveWallet with a hardcoded
passphrase of “password”.

Impact

Severe. All user wallets will be encrypted with the same weak passphrase “password”. This both renders
all wallets trivial to compromise given access to the encrypted wallet file (either human or another
program running on the same machine) and causes users to be unable to access their wallet since they
are unaware of the passphrase with which it was actually encrypted.

Security Audit Report | Tezos 6
2018 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Preconditions

None.

Feasibility

High. All wallets are encrypted with the same passphrase. Reproducible by simply creating a wallet,
re-running the wallet and decrypting it with “password”.

Remediation

Remove the hardcoded passphrase and use the passphrase supplied by the user.

Status

Updating the wallet no longer overwrites the encryption key.

Verification

Resolved.

Issue F: Newly Created Wallets Do Not Persist Between Restarts

Synopsis

The function submitAddress writes the encrypted wallet file to /tmp causing it to be deleted by the
operating system upon the next reboot.

Impact

Severe. All wallets that are created using the application (not imported) will be deleted after a computer
restart. If funds are received before restarting, the user will lose access to them permanently.

Preconditions

Wallet is created using the application.

Feasibility

High. All wallets created with the application are written to /tmp.

Remediation

Write the wallet file to a non-temporary location. A common practice is $HOME/.config/$APP_NAME/*
on POSIX systems. The Electron framework also provides the app.getPath function to handle this in a
cross-platform manner.

Status

Users are now prompted to save their wallet file to a location of their own choosing.

Verification

Resolved.

Issue G: Nautilus Queries Are Sent Unencrypted

Synopsis

The function runQuery sends unencrypted HTTP requests to a Tezos node at
http://nautilus.cryptonomic.tech:8732 , allowing trivial man-in-the-middle attacks.

Security Audit Report | Tezos 7
2018 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Impact

Moderate. While the payloads sent to this endpoint do not appear to contain any sensitive information, an
attacker can deny service or respond with incorrect blockchain data in order to trick the user.

Preconditions

None.

Feasibility

High. Trivial attacks when using the wallet on a public network like coffee shops or hotels using a rogue
access point like a WiFi Pineapple.

Remediation

Secure the remote server with SSL. Reject unauthorized SSL certificates and use X.509 certificate pinning
to ensure that communication with the remote server is authenticated.

Status

While no unencrypted Tezos node is hardcoded any longer, users are currently allowed to set their own
server URL, which is not validated to be using HTTPS. We have taken note that a ticket is currently open to
prevent users from setting unencrypted Tezos node URLs
(https://github.com/Cryptonomic/Tezos-Wallet/issues/174)..

Verification

Unknown.

Issue H: Created Wallets Overwrite Others With Name Conflicts

Synopsis

In the same code path as Issue F , where wallets are created by the application, wallet files are written to
disk using the user-provided name (i.e. wallet-name.json). Since there is no checking for existing
wallets by that name before proceeding, creating a new wallet with a name conflict will overwrite the
existing wallet.

Impact

Severe. Creating a new wallet with a name conflict with an existing wallet will cause the user to lose the
private key and associated funds.

Preconditions

A wallet is created using the application.

Feasibility

High. Will be triggered any time an additional wallet is created with a name conflict .

Remediation

Use the generated public key hash as a prefix (or postfix) to the wallet name in the written JSON
document’s file name. This will ensure that there will not be name conflicts and users do not have to
worry about how they name their wallets. Example: “ wallet-name-{pubkeyhash}.json ”.

Status

Users are now prompted to select the absolute location, including file name, of the wallet.

Security Audit Report | Tezos 8
2018 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Verification

Resolved.

Suggestions

Suggestion 1: Avoid Throwing Types That Don’t Provide a Stack Trace

Synopsis

The decryptMessage function in ConceilJS, throws a string “ The cipher text is of
insufficient length ” . While this is a perfectly legal statement in JavaScript, generally the idiomatic
approach is to throw Error objects. This helps ensure that error handling code is consistent and that
stack traces are provided in all environments.

Remediation

Instead of throwing a string, wrap the message in an Error constructor, (new Error(‘...’)) .

Status

The code in question was adjusted to throw an Error object.

Verification

Resolved.

Recommendations
We recommend that the remaining Issues and Suggestion stated above are addressed as soon as
possible and followed up with another verification by the auditing team. Additionally, we recommend that
serious consideration be given to the comments included in the Code Status section and that discussions
are continued. Although the application has been greatly improved before verification, we still recommend
that future security audits are completed.

Security Audit Report | Tezos 9
2018 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

