

Security Audit Report: Implementation
Analysis (1.0.15) and Overwinter Specification
Review

Zcash

Report Version: 29 May 2018

Table of Contents

Overview

Review Scope

Findings

Issues

Issue A: Pow leaks in windowed_exp

Issue B: Exponent leaks via power function

Issue C: Undefined behavior in crypto/common.h

Issue D: Undefined behavior in CBaseDataStream::read

Issue E: CTxMemPool::check() does nothing when turned on

Issue F: Transaction expiry reduces safety in reorgs

Recommendations

Security Audit Report | (Zcash) 1
2018 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Least Authority performed a security audit of the currently implemented version of Zcash, Magic Bean
v1.0.15, and the Overwinter specification for future implementation, at the request of the Zcash Company.

The audit was performed in February and March 2018 by Jack Lloyd, Ramakrishnan Muthukrishnan,
James Prestwich, Lily Anne Hall and Dominic Tarr. The initial report was issued on March 29, 2018. The
updated report was issued on May 29, 2018 after the verification phase.

Review Scope
For the Magic Bean code audit, we reviewed the following repositories of v1.0.15:

● https://github.com/zcash/zcash

● https://github.com/zcash/libsnark

● https://github.com/zcash/librustzcash

● https://github.com/zcash/zcash-seeder

● https://github.com/zcash/zcash-gitian

For the Overwinter specification, we reviewed the following Zcash Improvement Proposals (ZIPs):

● ZIP 143

● ZIP 200

● ZIP 201

● ZIP 202

● ZIP 203

In reviewing both the current codebase (v1.0.15) and the proposed Overwinter changes to the Zcash
cryptography and consensus protocols, the goal was to uncover any issues that could expose users to
loss, allow coin forgery, lead to network failure, break privacy guarantees, cause performance problems,
lead to consensus failures and cause game-theoretic challenges.

In manually reviewing the v1.0.15 code, we looked for general formatting errors and common C++
programming language mistakes like buffer overflows, use-after-free etc, that can lead to leakage of
sensitive information or denial of service attacks. We also did a cursory review for adherence to the
current protocol specification, but did not expect to find much because of the previous audits that were
completed. We also considered areas where more defensive programming could reduce the risk of future
mistakes and speed up future audits.

In reviewing the Overwinter specification, we looked for any potential issues with logic, interaction
dependencies and changes to assumptions that could lead to attacks on nodes or the possibility of
network splits while in the protocol upgrade phase.

Security Audit Report | (Zcash) 2
2018 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Findings
Although Zcash has only been around for a short time, it is clear that the contributing team has put
significant effort into good programming practices and detail-oriented specifications. Overall, we found
both the Magic Bean code and Overwinter specification to be of high quality and well-thought out.

Issues
We list the issues we found in the code in the order we reported them.

ISSUE / SUGGESTION STATUS

Issue A: Pow leaks in windowed_exp Verified: Mitigated with
Disclaimer

Issue B: Exponent leaks via power function Verified: Mitigated with
Disclaimer

Issue C: Undefined behavior in crypto/common.h Verified: Version 1.1.1 -rc1

Issue D: Undefined behavior in CBaseDataStream::read Verified: Version 1.1.1 -rc1

Issue E: CTxMemPool::check() does nothing when turned on Verified: Version 1.1.1 -rc1

Issue F: Transaction expiry reduces safety in reorgs Verified: Mitigated with
Documentation

Issue A: Pow leaks in windowed_exp

Synopsis

The windowed_exp function in
src/snark/libsnark/algebra/scalar_multiplication/multiexp.tcc leaks the bits of pow
through a cache-based side channel, as the lookup of powers_of_g[outer][inner] depends on the
bits of e.

Impact

Leakage of private key material.

Preconditions

An attacker capable of running code on the same machine as zcashd (for example using JavaScript
executing in a browser, or a cross-VM attack in a shared hosting provider).

Feasibility

Unlikely.

Remediation

Consider using blinding (eg, using pow+rand()*order_of_group) or a masked table lookup.

Security Audit Report | (Zcash) 3
2018 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Verification

Not changed. Mitigation in the form of a disclaimer about resistance to side channel attacks in proving will
be used in the short term.

Issue B: Exponent leaks via power function

Synopsis

The function power in src/snark/libsnark/algebra/exponentiation/exponentiation.tcc
leaks bits of the exponent via use of a square-and-multiply algorithm.

Impact

Leakage of private key material.

Preconditions

An attacker capable of running code on the same machine as zcashd (for example using JavaScript
executing in a browser, or a cross-VM attack in a shared hosting provider).

Feasibility

Unlikely.

Mitigation

Avoid running Zcash in environments where an attacker can execute arbitrary code on the same CPU.

Remediation

Switch to a different algorithm which does not leak information via timing or cache-based side channels.

Verification

Not changed. Mitigation in the form of a disclaimer about resistance to side channel attacks in proving will
be used in the short term.

Issue C: Undefined behavior in crypto/common.h

Synopsis

Invalid casts in crypto/common.h invoke undefined behavior. In C/C++ casting a pointer from a smaller
type (such as unsigned char) to a larger type can have undefined behavior. In particular, depending on the
CPU platform this can cause crashes or incorrect computations if the data is misaligned. The Read* and
Write* functions in crypto/common.h make use of these unsafe casts.

Impact

Invalid computations or crash depending on platform and compiler. It is unlikely that x86 platforms are
affected.

Preconditions

Depends on architecture and compiler used.

Security Audit Report | (Zcash) 4
2018 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Feasibility

This cannot be triggered by an external input, instead it is based on what optimizations the compiler
performs.

Mitigation

Avoid using Zcash on systems where misaligned loads can cause incorrect computation (such as ARM or
SPARC).

Remediation

Using memcpy is the C/C++ standard approved way of converting from a smaller type to a larger type. For
example, memcpy(&int32, char_buf, 4) will work regardless of the alignment of char_buf .

Verification

Code change verified in version 1.1.1 -rc1.

Issue D: Undefined behavior in CBaseDataStream::read

Synopsis

CBaseDataStream::read can potentially call memcpy with a NULL pointer, if its pch argument is null.
This is undefined behavior in C/C++. This was detected by compiling with UbSan and running the test
suite.

Impact

Hypothetically a crash or remote code execution.

Preconditions

An attacker must contrive a NULL to be passed to this function.

Feasibility

This bug is unlikely to have a practical effect.

Mitigation

 Avoid compiling Zcash with compilers which optimize heavily on the basis of undefined behavior.

Remediation

Check for a NULL argument and return immediately.

Verification

Code change verified in version 1.1.1 -rc1.

Security Audit Report | (Zcash) 5
2018 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Issue E: CTxMemPool::check() does nothing when turned on

Synopsis

CTxMemPool::setSanityCheck converts a float to a 32-bit unsigned integer. When doing so, the
exponent part is discarded. However, if the integer part overflows the target size of the integer, then the
behaviour is undefined.

void setSanityCheck(double dFrequency = 1.0) { nCheckFrequency = dFrequency *
4294967296.0; }

Impact

The value of nCheckFrequency is undefined. On x86-64 platform running Debian GNU/Linux with g++
7.3.0, the value was set to 0 . So, the sanity check (the check function in txmempool.cpp that makes
sure that the pool does not contain two transactions that spend the same input, etc) returns without doing
any checks.

Preconditions

Invoke zcashd with -checkmempool flag.

Feasibility

The bug is unlikely to have any practical effects as it seems to be only used for regression tests.

Mitigation

If -checkmempool is turned on and then the log prints related to the mempool checks should be ignored.

Remediation

Change the definition of setSanityCheck to:

void setSanityCheck(double dFrequency = 1.0) { nCheckFrequency =
static_cast<int>(dFrequency * 4294967295.0); }

Verification

Code change verified in version 1.1.1 -rc1.

Issue F: Transaction expiry reduces safety in reorgs

Synopsis

This is not a vulnerability. Rather it details the trade-offs made by a specific design decision, and the
non-obvious impacts on users.

Overwinter adds an expiryheight field to transactions, which signals transaction expiry as detailed in
ZIP 203 . This field specifies a block height at which the transaction becomes invalid. This may result in
confirmed transactions becoming unconfirmed and invalid in a reorg.

In the harmless case, a transaction becomes permanently invalid in a short reorg, and must be
resubmitted. This will be relatively common if very short expiry deltas are used. Subjectively users will see
a transaction receive one or more confirmations, then those confirmations disappear as the transaction
becomes invalid.

Security Audit Report | (Zcash) 6
2018 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

If the change in blockheight after such a reorg is longer than the recipient’s chosen acceptance period
(measured in confirmations), then the funds are functionally double spent. The recipient will accept the
transaction for value. However, after the reorg, the transaction will be invalid, and the sender will be in
control of the funds.

This may be exploited to directly monetize attacks that create long reorgs. Eclipse attacks and 51%
attacks may be effectively monetized this way. If some users are known to accept 0-confirmation
transactions, selfish miners may exploit this to become more profitable

As a side effect, this attack increases the ecosystem damage that caused by 51% attacks and consensus
failures. A 51% attacker may mine a private chain and selectively include transactions with
expiryheight set in order to maximize profit. This will be strictly more profitable than an equivalent
attack in Bitcoin.

A consensus failure resulting in a long reorg -- as occurred with 24 blocks (approx. 4 hours) in Bitcoin in
March 2013 and 165 blocks (approx. 1 hour) in Ethereum in November 2016 -- will cause users to
double-spend accidentally. This may result in long chains of confirmed transactions becoming invalid.
This means that consensus failures will cause strictly more damage to users than a Bitcoin reorg of
equivalent length. If the resulting split chains proceed at different rates, consensus failures may be
directly monetized via double-spends.

Consensus failures are uncommon, but possible in many types of upgrades. Notably, the March 2013
Bitcoin consensus failure was caused by a change in the operation of Bitcoin’s BerkeleyDB, not by a
consensus change.

Impact

Accidental double-spends may occur. Occasionally, miners may intentionally double-spend. Transactions
spending the outputs of these transactions become permanently invalid. The effectiveness of certain
attacks is increased, and certain attacks that were not previously directly monetizable become so.

Preconditions

A transaction with expiryheight set must be confirmed in a block which is orphaned in a re-org. The
post-reorg chain must not include the transaction before it expires.

Example:

A transaction with an expiryheight of 5005 is included in block 5000 (“5000-a”) and verified by a client.
The client then learns of a new chain tip at height 5010, which builds on an alternate block 5000
(“5000-b”), which has greater total difficulty and does not include the transaction. Despite previously
having 1 confirmation in block 5000-a, the transaction is permanently invalid in the post-reorg chain
building off block 5000-b.

Feasibility

High feasibility of permanent disconfirmation in short reorgs (the low-harm case).
Medium feasibility of permanent invalidation of a transaction chain.
Low feasibility of a deliberately engineered double-spend via miner or network manipulation.

In a consensus failure:
High probability of ecosystem damage.
High feasibility of deliberate exploitation.

Security Audit Report | (Zcash) 7
2018 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Mitigation

● Users should not accept transactions without at least 25 confirmations (approximately 1 hour), to
prevent accidental double spends.

● When accepting transactions, users should check their chain tip against outside sources to
prevent reorgs caused by eclipse attacks.

● UI should be modified to inform users that confirmed transactions with expiryheight set may
become permanently invalid in certain circumstances.

● The ZCash team should take additional precautions in soft forks and other network upgrades to
prevent consensus failures and network partitions.

Remediation

Consider a consensus rule treating children of transactions with expiryheight set as if they had a
relative locktime of at least 50 blocks (approximately 2 hours). This greatly increases the difficulty of
practical exploitation.

Verification

The expiryheight field is now documented in 2018.0-beta-19 specification.

Recommendations
Zcash is the first significant deployment of zk-SNARKSs and there is still a lot of uncertainty in the
potential attacks that could be utilized against this distinguishing feature of Zcash. Because of the lack of
zk-SNARKs deployments, even experienced cryptographic engineers will find the implementation of the
zero-knowledge proofs challenging to understand and interact with.

Although we found the Zcash code to be of high quality and well-thought out, it is potentially more
complex than necessary. While this is expected in these novel implementations, the complexity results in
obscurity.

Also, the Zcash team has made a commendable effort to simplify these concepts with thorough
explanations. Many topics relating to Zcash’s design and implementation have been covered in
documentation. While this documentation is helpful in explaining the general functioning of
zero-knowledge proofs and design decisions, we found it lacking in references to how these concepts are
implemented in the actual code.

We recommend that the Zcash team look for opportunities to simplify key components of the code and
expand documentation code references to allow for better maintenance, including for future audits and
encouraging community contributions.

Security Audit Report | (Zcash) 8
2018 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

